Landscape control of nitrous oxide emissions during the transition from conservation reserve program to perennial grasses for bioenergy
نویسندگان
چکیده
Future liquid fuel demand from renewable sources may, in part, be met by converting the seasonally wet portions of the landscape currently managed for soil and water conservation to perennial energy crops. However, this shift may increase nitrous oxide (N2O) emissions, thus limiting the carbon (C) benefits of energy crops. Particularly high emissions may occur during the transition period when the soil is disturbed, plants are establishing, and nitrate and water accumulation may favor emissions. We measured N2O emissions and associated environmental drivers during the transition of perennial grassland in a Conservation Reserve Program (CRP) to switchgrass (Panicum virgatum L.) and Miscanthus x giganteus in the bottom 3-ha of a watershed in the Ridge and Valley ecoregion of the northeastern United States. Replicated treatments of CRP (unconverted), unfertilized switchgrass (switchgrass), nitrogen (N) fertilized switchgrass (switchgrass-N), and Miscanthus were randomized in four blocks. Each plot was divided into shoulder, backslope, and footslope positions based on the slope and moisture gradient. Soil N2O flux, soil moisture, and soil mineral nitrogen availability were monitored during the growing season of 2013, the year after the land conversion. Growing season N2O flux showed a significant vegetation-bylandscape position interaction (P < 0.009). Switchgrass-N and Miscanthus treatments had 3 and 6-times higher cumulative flux respectively than the CRP in the footslope, but at other landscape positions fluxes were similar among land uses. A peak N2O emission event, contributing 26% of the cumulative flux, occurred after a 10.8-cm of rain during early June. Prolonged subsoil saturation coinciding with high mineral N concentration fueled N2O emission hot spots in the footslopes under energy crops. Our results suggest that mitigating N2O emissions during the transition of CRP to energy crops would mostly require a site-specific management of the footslopes.
منابع مشابه
The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.
The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well known, increasingly well documented, and recalcitrant: freshwater and coastal marine eutrophication, groundwater po...
متن کاملConsensus, uncertainties and challenges for perennial bioenergy crops and land use
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land-use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to pere...
متن کاملLand use change to bioenergy: A meta-analysis of soil carbon and GHG emissions
A systematic review and meta-analysis were used to assess the current state of knowledge and quantify the effects of land use change (LUC) to second generation (2G), non-food bioenergy crops on soil organic carbon (SOC) and greenhouse gas (GHG) emissions of relevance to temperate zone agriculture. Following analysis from 138 original studies, transitions from arable to short rotation coppice (S...
متن کاملInterannual variation in nitrous oxide emissions from perennial ryegrass/white clover grassland used for dairy production
Nitrous oxide (N2 O) emissions are subject to intra- and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2 O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short-term in nature (<1 year) and as a consequence, there is a lack of data on interannual variation in...
متن کاملNitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems
Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3(-)) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropp...
متن کامل